Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589682

RESUMO

Aquaculture, a cornerstone of global food production, confronts myriad challenges including disease outbreaks and environmental degradation. Achieving nutritionally balanced aquafeed is critical for sustainable production, prompting exploration into innovative solutions like selenium nanoparticles (SeNPs). SeNPs offer potent antimicrobial, antioxidant, and growth-promoting properties, bolstering gut immunity and digestive capacity in aquatic animals. Their high bioavailability and ability to traverse gut barriers make them promising candidates for aquafeed supplementation. This study investigates SeNPs as a cutting-edge solution to enhance nutrient supply in aquaculture, addressing key challenges while promoting environmental stewardship and food security. By synthesizing current research and highlighting future directions, this review provides valuable insights into sustainable aquaculture practices. SeNPs hold promise for revolutionizing aquaculture feed formulations, offering a pathway to improved production outcomes and environmental sustainability.

2.
Tissue Eng Regen Med ; 21(2): 353-366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37935935

RESUMO

BACKGROUND: Regeneration is a highly complex process that requires the coordination of numerous molecular events, and identifying the key ruler that governs is important to investigate. While it has been shown that TCTP is a multi-functional protein that regulates cell proliferation, differentiation, apoptosis, anti-apoptosis, stem cell maintenance, and immune responses, but only a few studies associated to regeneration have been reported. To investigate the multi-functional role of TCTP in regeneration, the earthworm Perionyx excavatus was chosen. METHODS: Through pharmacological suppression of TCTP, amputation, histology, molecular docking, and western blotting, the multi-function role of TCTP involved in regeneration is revealed. RESULTS: Amputational studies show that P. excavatus is a clitellum-independent regenerating earthworm resulting in two functional worms upon amputation. Arresting cell cycle at the G1/S boundary using 2 mM Thymidine confirms that P. excavatus execute both epimorphosis and morphallaxis regeneration mode. The pharmacological suppression of TCTP using buclizine results in regeneration suppression. Following the combinatorial injection of 2 mM Thymidine and buclizine, the earthworm regeneration is completely blocked, which suggests a critical functional role of TCTP in morphallaxis. The pharmacological inhibition of TCTP also suppresses the key proteins involved in regeneration: Wnt3a (stem cell marker), PCNA (cell proliferation) and YAP1 (Hippo signalling) but augments the expression of cellular stress protein p53. CONCLUSION: The collective results indicate that TCTP synchronously is involved in the process of stem cell activation, cell proliferation, morphallaxis, and organ development in the regeneration event.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Simulação de Acoplamento Molecular , Proliferação de Células , Regeneração , Timidina/metabolismo
3.
Microb Pathog ; 114: 409-413, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29233780

RESUMO

A novel N-acyl substituted indole-linked benzimidazoles and naphthoimidazoles were synthesized. Their chemical structures were confirmed using spectroscopic tools including 1H NMR, 13C NMR and CHN-elemental analyses. Anti inflammatory activity for all target compounds was evaluated in-vitro. The synthesized compounds hinder the biofilm formation and control the growth of the pathogen, Staphylococcus epidermis. Anti microbial activity of the compounds was evaluated against both Gram negative and Gram positive bacteria such as Staphylococcus aureus (MTCC 2940), Pseudomonas aeruginosa (MTCC424), Escherchia coli (MTCC 443) and Enterococcus fecalis.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Biofilmes/efeitos dos fármacos , Indóis/síntese química , Indóis/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...